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Abstract-In this paper. we carry out an explicit analysis ofa bifurcation problem for a solid sphere.
composed ofa special class of('Qmpres.~iblenon-linearly elastic materials. and subjected to prescribed
radial stretch), > I at its boundary. One solution to this problem. for all values of ).. is that of pure
homogeneous stretching in which the sphere expands radially. However. for sufficiently large values
of ).. a second configuration is possible where an internal traction-free spherical cavity forms at the
origin. The critical stretch), = ).<r at which this solution bifurcates from the trivial homogeneous
solution is determined. The trivial solution is shown to become unstable at ). = ~. It is also shown
how the bifurcation model may be interpreted as describing sudden rapid growth of a pre-existing
microvoid. The analogous issues for axisymmetric plane strain deformations ofa cylinder are briefly
discussed.

I. INTRODUCTION

Void nucleation and growth in solids have long been ofconcern because of the fundamental
role such phenomena play in fracture and other failure mechanisms. [See e.g. Tvergaard
(1990) for a recent review of void growth in metals.] Sudden void formation ("cavitation")
in vulcanized rubber has also been observed experimentally by Gent and Lindley (1958).
[See also Williams and Schapery (1965).) A recent review on cavitation in rubber is that of
Gent (1990). Non-linear theories of solid mechanics have been extensively used recently to
model such phenomena. The impetus for much of the current theoretical developments has
been supplied by the work of Ball (1982). Ball has studied a class of bifurcation problems
for the equations of non-linear elasticity which model the appearance of a cavity in the
interior of an apparently solid homogeneous isotropic elastic sphere once a critical external
load is attained. An alternative interpretation for such problems in terms of the sudden
rapid growth ofa pre-existing microvoid has been given by Horgan and Abeyaratne (1986) ;
see also Sivaloganathan (1986a). As pointed out, for example, by Horgan and Abeyaratne
(1986), cavitation is an inherently non-linear phenomenon and cannot be modeled using
linearized solid mechanics theories.

In the comprehensive work of Ball (1982) on radially symmetric solutions, bifurcation
and stability analyses are carried out for displacement and traction boundary-value prob­
lems in n-dimensions for both incompressible and compressible materials. For incom­
pressible materials, the results are extensive and explicit while those in the more difficult
compressible case are comparatively limited and require several constitutive assumptions.
Further studies in the compressihle case were carried out by Stuart (1985), Podio-Guidugli
et 1.11. (1986). Horgan and Abeyaratne (1986), Sivaloganathan (1986a, b), Ertan (1988) and
Meynard (1990). Anisotropic compressible materials were considered by Antman and
Negron-Marrero (1987). Other contexts in which cavitation for compressible materials was
investigated include consideration of non-radially symmetric solutions (James and Spector,
1989), elastodynamics (Pericak-Spector and Spector. 1988) and elastic membrane theory
(Haughton, 1990; Steigmann. 1991 ; see also Haughton, 1986 for incompressible membrane
theory). For incompressihle materials, finite strain plasticity models were investigated by
Chung et al. (1987) while the effects of rate dependence were examined by Abeyaratne and
Hou (1989). Further studies for incompressible materials were carried out by Chou-Wang
and Horgan (1989a) for e1astostatics and by Chou-Wang and Horgan (I989b) for elasto­
dynamics. The effects of material inhomogeneity on cavitation were investigated by Horgan
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and Pence (1989a, b, c). Void collapse for both im:ompn:ssible and compressible materials
has been examined by Abeyaratn.: and Hou ( 1991). Further work in plasticity was carried
out by Hou and Abeyaratne ( 1991), Huang t't al. ( 1991) and Tvergaard t't al. ( I990l.

In contrast to the situation for incompressible materials, it is not possible. in general.
to determine analytically solutions describing cavitation for compressible materials. Thus
the analyses of cavitation for compressible materials have depended heavily on qualitative
arguments for the relevant diffen:ntial equations. Such arguments, in turn. have required
imposition of several constitutive hypotheses [see e.g. Ball (198:2), Stuart (1985), Podio­
Guidugli et al. (1986), Sivaloganathan ( 1986a, b) and Meynard ( 1990)). For the particular
case of a Blatz-Ko material (which provides a model for a certain foamed rubber). explicit
analytic solutions describing cavitation han: been obtained by Horgan and Abeyaratne
(1986) [see also Ertan (1988) for extensions of this work). The purpose of the present paper
is to examine another particular class of compressible materials for which the cavitated
solutions can be obtained explicitly. The materials modeled by the strain-energy densities
of concern here will be called gmerali::t'd Varga materials [see e.g. Haughton (In7) for a
special case) since they may be viewed as a generalization, to include the e1fect of Cllm­
pressibility, of an incompressible material model proposed by Varga (1966). It turns out
that the solutions discussed here are simpler to describe than the corresponding solutions
for the Blatz-Ko material (Horgan and Abeyaratne, 1986) and thus ofTer a particularly
illuminating example of cavitation for isotropic compressible non-linearly elastic materials.

In the next section, we formulate the basic boundary-value problem that arises when
a solid sphere, composed of a homogeneous isotropic compressible elastic solid. is subjected
to a prescribed radial stretch J. > I on its boundary. One solution to this problem. li)r all
mlllcs ofJ., corresponds to a trivial hOlllogeneous state in which the sphcre expands radially.
However, ji)r certain materials. one can find. for sulliciently large values of ).. another
possible radially symmetric configuration involving an internal traction-free spherical
cavity. A class of materials (generalized Varga materials) for which this is possible is
described in Section J. A critical stretch A" is determined such that when J. > i". such an
additional solution is obtained. This solution bifurcates from the trivial solution at J. == )'Cf"

(Sec the solid curve in Fig. I.) To interpret physically the mathematical bifurcation problem
described in Sections 2 and J, we turn attention. in Section 4, to the problem of a hollol!'
sphere with undeformed radii IJ, A (IJ < A). The inner surface is free of traction while the
outer surface is subjected to a prescribed surface displacement, with ). > I denoting the
prescribed stretch. The body is composed, again, of a generalized Varga material. The
solution to this second problem is also obtained. Attention is then focussed on features of
this solution in the limit as B ..... 0 + corresponding to an infinitesimal microvoid. It is shown

«
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Fig. I. Schematic diagram showing variation of the dcfonned cavity radius r(O +) with prescrihcd
stretch ;.. The solid curve pert;lins to thc bifurcation of a solid sphere (Sections 2. 3) while the
dashed curves descrihe the growth of a pre-existing void for different undcformed void radii B
(Section 4). with 8/.·' = r.. r.« I. The solid curve also dericts the limiting case of a microvoid
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that, in this limit, the radius of the deformed cavity tends to zero for all values of the applied
~tretch in the range I < ,i, < ).".., while for). > ).".., this radius is positive and increases rapidly
with increasing,i, (see Fig. I). Thus, in this limit, the solution for the hollow sphere coincides
with that of the bifurcation problem. Consequently, as was shown, for example, by Horgan
and Abeyaratne (1986) and Sivaloganathan (1986a) in related contexts, the bifurcation
problem may be viewed as providing an idealized model describing the growth of a pre­
existing microvoid. In Section 5, we examine the stability of the cavitated solution obtained
in Section 3 using an energy comparison argument. It is shown that the potential energy
associated with the cavitated solution, whenever it exists, is strictly less than that of the
trivial solution corresponding to the same value of applied stretch and is also strictly less
than that associated with any radial (not necessarily equilibrium) deformation. Thus, when
A. > ),c" one indeed expects cavitation to occur. Finally, in Section 6 we briefly outline the
corresponding results for plane strain deformations of a cylinder.

It should be noted that the constitutive assumptions made in Section 3 for the gener­
alized Varga materials (12) are much less restrictive than those required in the analyses of
Ball (1982), Sivaloganathan (1986a) or Podio-Guidugli et al. (1986). Thus the results
obtained in these references using the direct method of the calculus of variations are not
directly applicable to the bifurcation problem considered here. A similar remark pertains
to the results obtained in Stuart (1985) and Meynard (1990) using shooting methods.

2. BIFURCATION PROBLEM FOR A SPHERE

We are concerned with a sphere composed of a homogeneous isotropic compressible
non-linearly clastic material. Using spherical polar coordinates, the undeformed sphere
occupies the domain Do = {(R, a, <1»)10 ~ R < A, 0 < a ~ 271:, 0 ~ <I» ~ 7I:}. The sphere is
subjected to a prescribed uniform radial displacement at its surface R = A. The resulting
deformation is a mapping which takes the point with spherical polar coordinates (R, a, (~)

in the undeformed region Do to the point (r, 0, r!» in the deformed region D. We assume
that the deformation is radially symmetric so that 0 = a, r!> = <I» and

r = r(R) > 0, 0 < R ~ A; r(O+) ~ 0, (I)

where r = r(R) is to be determined. If r(O+) = 0, the sphere remains solid. However, if
r(O+) > 0, then a spherical cavity of radius r(O+) has formed at the origin. In this event,
the cavity surface is assumed to be traction-free. The polar components of the deformation
gradient tensor F associated with the deformation at hand are given by

F = diag (;(R), r(R)jR, r(R)jR),

while the principal stretches are

(2)

(3)

In (2) and (3) the superposed dot denotes differentiation with respect to R. It is assumed
that J == det F = r2;/R2 > 0 on 0 < R ~ A, so that, in view of (I), we have

;(R) > 0, 0 < R ~ A. (4)

The strain-energy density per unit undeformed volume for isotropic compressible
elastic materials is denoted by W = W(A." Ah AJ), where ).j (i = 1,2,3) are the principal
stretches. The function W is invariant with respect to interchange of the Aj and is normalized
so that it vanishes in the undeformed state and so W( I, I, I) = O. The principal components
of the Cauchy stress T are given by



In view of (3), we thus have
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;., cW
Til = -.-.-.~ (no sum on i).

).t)'~)'3 l)'j
(5)

(6)

for the radial and hoop stresses. Note that in (6) we consider T(R) rather than the more
conventional T(r).

In the absence of body forces. the equilibrium equations div T = 0 can be shown to
reduce to the single equation

d ( 'GW) oW
d--R R-~ -2R~=0. O<R<A.

V).! (')'2
(7)

where W is evaluated at the principal stretches (3). By virtue of (3). we see that (7) is a
second-order non-linear ordinary ditferential equation for r( R). Since the sphere is subjected
to prescribed uniform radial displacement of its boundary r = A. we have the boundary
condition

r(A) = I.A.

where ;. > I is the prescribed radial stretch. At the origin, we have either

r(O+)=O

or

T,,(O +) = 0 if r(O +) > O.

(9)

(10)

It may be readily verified that one solution to the problem (7)-( 10). for all values of
;. > I is

r(R) = I.R, 0 ~ R ~ A. (I I)

Note that (9) is satisfied in this case. This homogeneous solution, which we call the tridal
solution, corresponds to a homogeneous deformation in which the sphere expands radially.
For certain materials and for I. sufficiently large, it has been shown that, in addition to the
trivial solution, there exists a second solution for which (10) holds so that a traction-free
cavity has formed at the origin. The existence of such solutions describing cavitation has
been established for a wide class of isotropic compressible materials by Ball (1982). Stuart
(1985), Podio-Guidugli I't al. (1986). Horgan and Abeyaratne (1986). Sivaloganathan
( 1986a, b) and Meynard (1990) and for at/isotropic compressible materials by Antman and
Negron-Marrero (1987). The cavitation solutions have been shown to bifurcate from the
trivial solution at the critical value ;'<r at which the trivial solution becomes unstable.

It is not possible. in general. to determine the cavitation solutions analytically. For the
particular case of a Blatz-Ko material. analytic solutions describing cavitation hare been
obtained by Horgan and Abeyaratne (1988) [see also Etan (1988) for extensions of this
work]. Horgan and Abeyaratne (1986) treat the analogous plane strain problem for
cylindrical cavities in detail, while the spherical problem can be analyzed using the spheri­
cally symmetric solutions developed in Chung et al. (1986) [see note added in proof
in Horgan and Abeyaratne (1986)]. The spherical problem has been subsequently rc­
investigated by Tian-hu (1990) confirming the results stated in Horgan and Abeyaratne
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(1986). The purpose of the present paper is to examine another particular class of com­
pressible materials for which the cavitated solutions can be obtained explicitly. It turns out
that the solutions are simpler to describe than the corresponding results for the Blatz-Ko
material. and thus offer a particularly illuminating example of cavitation for isotropic
compressible non-linearly elastic materials.

3. SOLUTION FOR A PARTICULAR CLASS OF MATERIALS

Consider the class of isotropic compressible materials for which W has the form

where Ct. C2 are constants and 9 is an arbitrary sufficiently smooth function of its argument.
We assume that 9 satisfies the normalization conditions

g(l) = O. g'(I) = -(2cz+cl)' (13)

so that Wand the Cauchy stress T vanish in the undeformed state. Materials of the
form (12) have been extensively analyzed in Carroll (1988). where closed form analytical
representations for a wide variety of deformations have been obtained. When (z = 0 in
(12). the materials modeled by (12) have been called Varga materials by Haughton (1987)
since they may be viewed as a generalization. to include the effect ofcompressibility. of an
incompressible material model proposed by Varga (1966). For (2 :f; O. we call the materials
(12) generali:ed Varga materials.

When W is given by (12). the differenti'll equation (7) reduces to

( 14)

where

Using the chain rule. we may write (14) as

d
g"(J) dR J = O. 0 < R < A.

and so, provided

g"(1) :f; O. 0 < R < A.

we deduce from (16) that

(15)

(16)

(17)

(18)

where k , is a constant. By virtue of (4). we have k l > O. Equation (18) may be integrated
to yield

(19)

where k z is a constant. Thus (19) is an explicit closed form solution to (7) for the material
(12), provided (17) holds. The solution (19) was obtained by Carroll (1988) and inde­
pendently by Horgan (1989). It was also established in Haughton (1987) for the case when
C2 = o.
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We turn now to the boundary conditions. First we note that if k ~ = O. k, = i. 3 in (19).
we recover the trivial solution (II) for which (8) and (9) hold. Suppose now that (8) and
(10) are to be satisfied. Then k,. k~ must be such that

k~ > O.

(20)

(21 )

the latter condition being equivalent to r(O+) > O. The radial stress T" follows from (6).
(3) and (12) as

(22)

where J = r~;i R~. Since J = k I from (18) and since r(O +) > O. we see from (22) that «( 0)
is satisfied provided

(23)

Tizus. ifa positil'e conslant k I can hefound suclz tJrat (23) holds. the radial stress corresponding
to (19) 1'1If1isJres at tlze c(ll'ity houndary. In view of (18) and (23) we then have ,q'(J) = 0
and so the radial stress field (22) is

where r( R) is given by «(9). From (20) we have

k~ = ().'-kdA'.

and so (21) will hold if and only if

Thus the eri(icalstre(ch i'a is given by

(24)

(25)

(26)

(27)

where k, > 0 satisfies (23). To ensure the existence of i.",. we thus assume henceforth that
the constitutive function gin (12) is such that (23) holds for some unique positive constant
k I' In fact. since the applied stretch ;. > I. we require that k I > I. A sufficient condition to
ensure the existence of such a k I is to assume that g(s) has a single minimum at
.I' = k I (k, > I). Henceforth we assume that this is the case. Further assumptions on g are
usually necessary to ensure a physically reasonable response but we shall not pursue this
here.

In summary. for the material (12) witJr g satisfying (13) and (17) and the stipulations
of (Iz£, preceding paragraph. we have found that whene[!er the prescribed stretch i. is greater
tlzan i.",. tlze existence of a solution with internal traction-free caL'ity is guaranteed and tlzis
solution is gicen hy

(28)

1I'lzer£' k I > 0 is determined from (23).
The deformed cavity radius r(O+) follows from (28) as
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(29)

The variation of the cavity radius with prescribed stretch J... as described by (29). is depicted
by the solid curve in Fig. I (in the range ;. > J..cr).

The radial stress field subsequent to cavitation is given by (:24) with r(R) given by (28).
The critical value T;~ of the radial stress at the outer boundary when A. == ;'cr follows from
(:2~). (27) and (28) as

(30)

The hoop stresses subsequent to cavitation follow from (6). (3). (12) and (18) as

(31)

where r(R) is given by (28). The critical value n,r of the hoop stress at the outer boundary
when ;. == ;'er then follows from (31). (27) and (28) as

(32)

We observe th'lt this value coincides with (30).
We remark that the e4uilibrium solutions described above could also have been

obtained from an energy minimiz'ltion approach. Since displacements arc prescribed at the
outer surface of the sphere and the cavity surface (when it exists) is free of traction, the
associated potential energy E is given by

i'4

== 41t F(r,;; R) dR.
II

Minimizers of E necessarily satisfy the Legcndre incquality

t'~F
..-:, > 0 for all R in 0 < R < A.
D(r)'

When the form of W is recalled from (12), it is seen that (34) reduces to

g"(1) > O.

(33)

(34)

(35)

so that g(') must be convex at thc value 1 associated with the minimizer. If one adopted
as a constitutive hypothesis that (35) should hold for all 1 > 0, then this would guarantee
the existence of a single minimum for g(s) at s == k I (k I > I), as assumed above.

4. GROWTH OF A MICROVOID

It has been shown by Horgan and Abeyaratne (1986) (in the context of plane
deformations of a Blatz-Ko material). and by Sivaloganathan (1986a) (for radially sym­
metric deformations of classes of compressible materials) that bifurcation problems of the
type just discussed may be viewed as providing an idealized model describing the growth
of a pre-existing microvoid. The latter problem concerns a hoI/ow sphere with undeformed
inner and outer radii B, A, respectively. The outer boundary is subjected to a prescribed
uniform radial displacement as before. while the inner boundary is traction-free. Thus, the
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differential equation (7) now holds on the interval 8 < R < A and for the material (12) we
have the solution

where K , and K 2 are constants. The boundary conditions are

r(..1) = iA.

and

(36)

(37)

(38)

where (22), (18) have been used to obtain (38). The two constants K
"

K, are thus determined
from

(39)

and

(40)

On solving (39) for K2 and substituting in (40) we ohtain

lJ2(" 2Bc,
[(Al-KilA\+K,B'j21 + [(T\:....K,)Al~KI/Jlll \ +g'(Kil = O. (41)

Using the dimensionless radius ratio

:x = lJIA, 0 <:x < I,

we write (41) as

(42)

(43 )

For prescribed ;., with ('I, (', and:x known, (43) is an equation for the determination of K ,.
Once K , is found, K 2 may be obtained from (39) and thus the deformation given by (36)
is determined.

The deformed inner radius is given by

(44)

and so

(45)

where K 1 (which depends, for given CI, C2' on )., :x) is determined from (43). The r(B)IA
versus ;. relationship is thus implicitly given by (45), together with (43).

We turn now to the examination of the limiting case of a microvoid. Thus we consider
the preceding solution in the limit as 8 - 0+. with A. i., R held fixed. By (42) we see that
:x-+O+ as 8-0+. Letting r.x-O+ in (45), we see that, when ;.3> K1 , (45) and (43)
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reduce to (29) and (23) respectively (with K, == k.). On the other hand, when ,l, J ~ Kf, on
letting Cl .... 0+ in (45) we see that K. must be equal to). J since r(B) must be non-negative.
Thus ,l,J = K. and so from (39) we see that K2 = O. On setting K, =.lJ and K2 = 0 in
(36), one recovers the trivial solution (II). Thus, we see that in the limit as B -+ 0+, the
solution for the microvoid problem tends to the trivial solution as long as ..t ~ Act> while it
tends to the cavitated solution when;' > )"Ct. The foregoing limit is depicted schematically
in Fig. I where the dashed curves describe growth of a pre-existing void for different
undeformed void radii B. The solid curve denotes the limiting case of a microvoid (B ....
0+). Similar considerations have been discussed by Horgan and Abeyaratne (1986) and
Sivaloganathan (l986a).

5. ENERGY COMPARISON

We now return to the solutions described in Section 3. Since for values of..t > Acr we
have obtained two solutions, it is natural to compare their associated energies at the same
value ofprescribed stretch. [Cf. Ball (1982).] Since displacements are prescribed at the outer
surface of the sphere and the cavity surface (when it exists) is free of traction, the associated
potential energy £ is given by

(46)

It is readily verified from (3) that

(47)

Making use of (47). it can be shown that (7) may be rewritten as

(48)

[Cf. Ball (1982), eqn (6.12). As remarked there. (48) also follows from a conservation law
due to Green (1973).] Thus from (48) we find that

(49)

and so

(50)

where ..t == r(A)/A is the prescribed stretch at the outer boundary. For the trivial solution
(11), we thus obtain £ = £1 with

£, 41t J "
1 = 3" A W(/., ...., ,l,). (51)

For the cavitated solution, it follows from (8) and (19) that rCA) = k d..t 2 and so £ = E.
with

SAS 29:3-8
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(52)

When the explicit form (12) for the strain-energy density is used in (51) and (52), one finds
that

(53)

Thus for I, > I.cr (i.e. I,J > kd. we deduce from (53) that

(54)

since we have assumed (recall Section 3) that g(s) has a minimum at s ::::: k I' Thus. the
energy associated with the cavitated solution (whenever it exists) is strictly less than that
of the trivial solution corresponding to the same value of i..

In fact. a much stronger result can be established, namely that the cavitated equilibrium
solution minimizes the energy absolutely relative to allY radial (not necessarily equilibrium)
deformation. To see lhis we write

The term involving ('I is C 1 R !(R!r)" and the term involving C2 is 2c!rR \!(R1!rf. to
within unimportant additive constant terms. When integr'lted to obtain the tOlal energy,
these terms integrate to c I A 2r(A) and c!Ar 2(A) respectively. and arc fixed since r(A) is
prescribed as in (X). Consequently. for allY radial deformation r(R) with r(A) > k:"A, it
follows that

(4rr) 1(E - EJ ::::: fI R 2 [g(J) -g(k I)} dR.
/)

(56)

Thus I:.~ is the absolute minimum since k 1 minimizes g( '). Therefore. within tlte class of
radial deformatiolls. the cavitated solution yields the absolute minimum energy. Thus when
I, > I.". conditions arc indeed energetically t:lvorable for a cavity to appear. (It would be
of interest to consider energy minimization within the wider class of not necessarily radial
or radially symmetric deformations but this is beyond the scope of the present work.)

6. RESULTS FOR A CYLINDER IN PLANE STRAIN

In this section. we describe brielly how the foregoing considerations can be applied to
the analogous problem for a cylinder.

6.1. BljilfC(ltiotl pfob/cm
Using cylindrical polar co-ordinates. the undeformed cross-section of the cylinder

occupies the domain Do ::::: {(R. 0)10 ~ R < A, 0 < 0 ~ 21t}. The cylinder is subjected to
a prescribed uniform radial displacement at its surface R = A. The deformation taking the
point (R. 0) to (r. 0) is assumed to be an axisymmetric plane strain so that 0 ::::: 0 and

r=r(R»O. O<R~A: r(O+)~O. (57)

As before. if r(O +) = 0 the cylinder remains solid while if r(O +) > O. a cavity (whose
surface is assumed traction-free) has formed at the origin. We have
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F = diag {;(R).r(R)/R}.

with principal stretches

A.I = ;(R). ;'2 = r(R)/R.

and assuming J =det F = r;/R > 0 on 0 < R ~ A. we thus have

;(R) > O. 0 < R ~ A.

289

(58)

(59)

(60)

Denoting the strain-energy density per unit undeformed volume for the isotropic
compressible materials at hand by W(A." A.2). with W(I, I) = O. we have

(61)

Thus

(62)

and the equilibrium equations reduce to

(63)

where W is evaluated at the principal stretches (59). The boundary condition at r = A is

r(A) = ;.A,

where ;. > I is the prescribed radial stretch. At the origin, we have either

r(O+) = 0

or

T,,(O+) = 0 if r(O+) > O.

(64)

(65)

(66)

As in the case of the sphere. it is again easily verified that one solution to the problem
(63)-(66) for all values of A. is the trivial solution

r(R) = A.R. 0 ~ R ~ A.

describing uniform radial expansion.

(67)

6.2. Solution Jor a particular class ojmaterials
We again consider the strain-energy density (12) now specialized to plane deformations.

The differential equation (63) in this case reduces to

where

d
dRg'(J) = o. 0 < R < A. (68)
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As before. we deduce from (68) that. provided

9"(1) ~ O. 0 < R < A.

then

J=rfjR=k1onO<R<A.

where k l > 0 is a constant. This leads to the explicit solution

(69)

(70)

(71)

(72)

where k2 is a constant. The solution (72) was also obtained by Carroll (1988) and inde·
pendently by Horgan (1989).

In what follows, we confine attention to the special Varga material for which c" = 0 in
(12). Proceeding as in the three~dimensionalcase for the sphere, it is readily shown that if
a positive constant k I can be found such that

then/or

g'(kd = O. (73)

(74)

thi' existence ofa solution with an internal traction-free ellcity is gtwrc/tl(ccc/ und this solution
is gil'en hy

(75)

The deformed cavity radius r(O+) follows from (75) as

(76)

The graph of r(O +)/A versus )., while now of quadratic nature rathcr than cubic as in (29),
will have the general featurcs shown in Fig. I. Again. to ensure that a unique constant k I

exists such that (73) holds. it is sullicient to assume that g(s) has a single minimum at s = k I

(k 1 > I). The considerations of Sections 4 and 5 may be adapted in an obvious way to the
plane strain problem-we omit the details.

It should be noted that in a recent paper on cavitation for compressible clastic memo
hranes (Haughton. (990), Haughton has numerically demonstrated that cavitation can
occur in a membrane composed ofa B1atz~Komaterial. However, he also shows analytically
that for the special Varga material « 12) with '-'2 = 0) cavitation cannut occur. The membrane
theory employed by Haughton (1990) is derived from three-dimensional elasticity theory.
Subsequently, Steigrnann (1991) has shown that cavitation can occur for this material if a
direct membrane theory is employed. As noted by Steigmann (1991). his analysis also
pertains to the plane strain problem.

Acknowledgements-This research was supported in part by the: National Science Foundation under Grant No.
MSM·89.Q4719 and by the U.S. Air Force Office of Scientific Research under Grant No. AFOSR-89-0470. The
author is grateful to the reviewers or this paper for their helpful and constructive comments.

REFERENCES

Abeyaratne. R. and Hou. H.-S. (1989). Growth 01" an infinitesimal cavity in a rate-dependent S<llid. J. App!. Medl
~,40-46.

Abeyaratne. R. and Hou.I-L·S. (1991). Void collapse in an incompressihle e1;.tstic solid (to be published).



Void nucleation and growth for elastic materials 291

Antman. S. S. and Negron-Marrero. P. V. (1987). The remarkable nature of radially symmetric equilibrium states
of aeolotropic nonlinearly elastic bodies. J. Elasticity 18. 131-164.

Ball. J. M. (1982). Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Phil. Trans. R. Soc.
Land. AJ06. 557-610.

Carroll. M. M. (1988). Finite strain solutions in compressible isotropic elasticity. J. Elasticity 20. 65-92.
Chou-Wang. M.-S. and Horgan. C. O. (1989a). Void nucleation and growth for a class of incompressible

nonlinearly elastic materials. Int. J. Solids Structures 25. 1239-1254.
Chou-Wang. M.-S. and Horgan. C. O. (1989b). Cavitation in nonlinear e1astodynamics for neo-Hookean

materials. Int. J. Engng Sci. 27.967-973.
Chung. D.-T.. Horgan. C. O. and Abeyaratne. R. (1986). The finite deformation of internally pressurized hollow

cylinders and spheres for a class of compressible elastic materials. Int. J. Solids Structures 22.1557-1570.
Chung. D.-T.. Horgan. C. O. and Abeyaratne. R. (1987). A note on a bifurcation problem in finite plasticity

related to void nucleation. Int. J. Solids Structures 23. 983-988.
Ertan. N. (1988). Inlluence of compressibility and hardening on cavitation. ASCE J. Engng Mech. 114. 1231­

1244.
Gent. A. N. (1990). Cavitation in rubber: a cautionary tale. Rubber Chern. Technol. 63. G49-G53.
Gent. A. N. and Lindley. P. B. (1958). Internal rupture of bonded rubber cylinders in tension. Proc. R. Soc. Lond.

A249. 195-205.
Green. A. E. (1973). On some general formulae in finite elastostatics. Arch. Ration. Mech. Anal. SO. 73-80.
Haughton. D. M. (1986). On non-existence of cavitation in incompressible elastic membranes. Q. J. Mech. Appl.

Math. 39. 289-296.
Haughton. D. M. (1987). Inflation of thick-walled compressible elastic spherical shells. IMA J. Appl. Math. 39.

259-272.
Haughton. D. M. (1990). Cavitation in compressible elastic membranes. Int. J. Engng Sci. 28. 163-168.
Horgan. C. O. (1989). Some remarks on axisymmetric solutions in finite e1astostatics for compressible materials.

Pr(lC. R. I,,:vh Acodeml' 89'\.185-193.
Horgan. C. O. and AbcYaratne. R. (1986). A bifurcation problem for a compressible nonlinearly clastic medium:

growth of a micro-void. J. Ele",ticity 16. 189··200.
I/organ. C. O. and Pence. T. J. (1989a). Void nucleation in tensile dead-loading of a composite incompressible

nonlinearly clastic sphere. J. Ela.tticity 21, 6182.
I lorgan. C. O. and Pence. T. J. (1989b). C;lvity formation at the center of a composite incompressible nonlinearly

elastic sphere. J. Appl. Me-ch. 56. 302 J08.
I/org:lll. C. O. and Pem;e. T. J. (198ge). Void nucle:ltion due to large deformations in nonlinearly elastic

composites. r"'''''e-di''!ls olthe 4th Japelfl US ('e"'fi-re-nn- 0" Composite- ,\-tem-rialt. Washington. DC. June 1988
(cdited by J. R. Vinson). pp. 232 ·241. Tel.:hnomic Publishing Co.. lancaster. PA.

11011. II.-S. allll Aheyaratne. R. (1991). Cavitation in e1:lstic and elastic-plastic solids. J. Mech. Phys. Solids (in
press).

1I11ang, Y.. lIutchinson. J. W. and Tverga:lrd. V. (1991). Cavitation instabilities in elastic-plastic solids. J. Mech.
PhI'S. Soliciv 39. 223 242.

James. R. D. and Spector, S. J. (1989). The formation oflilamentary voids in solids. IMA Preprint Serit:s. No.
572. University of Minnesota.

Meynard. F. (1990). Radially symmetric cavitation and non-cavitation of a hypcrelastic ball. Preprint. EPFl­
DMA. l,lUsanne, Switzcrland.

Pericak-Spector. K. A. and Spector. S. J. (19K8). Nonuniqucncss for a hyperbolic system: cavitation in nonlinear
dastodynamics. Arch. Rat. Mech. Anal. 101.293-317.

Podio-Gliidugli. P.. Vcrgara CafTlIrcili. G. and Virga. E. G. (1986). Discontinuous cncrgy minimizcrs in nonlinear
elastostatics: lin cxamplc of J. Ball revisitcd. J. Elasticity 16.75-96.

Sivaloganathan, J. (1986a). Uniqucness of rcgular and singular equilibria for spherically symmetric problems of
nonlinear elasticity. Arch. Ratio". Mech. Analysis 96. 97-136.

Sivaloganathan. J. (1986b). A field thcory approach to stability of radial equilibria in nonlinear elasticity. Math.
Proc. Camh. Phil. Suc. 99. 589-604.

Stcigmann. D. J. (1991). Cavitation in clastic membranes-an eumplc. J. Elasticity (in press).
Stuart. C. A. (1985). Radially symmctric cavitation for hyperelastic matcrials. Ann. Inst. Henri Poincare-Analyse

nun lineaire 2. 33-66.
Tian-hu. H. (1990). A theory of the appearance and growth of the micro-spherical void. Int. J. Fracture 43. RSI­

R55.
Tvergaard, V. (1990). Material failure by void growth to coalescence. In Advances in Applied Mechanics (edited

by J. Hutchinson and T. Wu). Vol. 27. pp. 83-151. Academic Press, San Diego.
Tvergaard. V., Huang. Y. and Hutchinson, J. W. (1990). Cavitation instabilities in a power hardening elastic­

plastic solid. Tech. Univ. of Denmark. Report #415.
Varga. O. H. (1966). Stress-Strain Bt!hQlJior of Elastic Materials. Wiley, New York.
Williams. M. l. and Schapcry. R. A. (1965). Spherical flaw instability in hydrostatic tension. Int. J. Fracture

Mt'chanics 1.64-71.


